2 00 0 Semi - Infinite Cohomology and Superconformal Algebras
نویسنده
چکیده
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a nondegenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry. COHOMOLOGIE SEMI-INFINIE ET ALGÈBRES SUPERCONFORMES Résumé Nous décrivons des représentations de certaines algèbres superconformes dans le complexe de Weil semi-infini de l’algèbre des lacets d’une algèbre de Lie complexe de dimension finie et dans la cohomologie semi-infinie. Nous démontrons que dans le cas où l’algèbre de Lie est munie d’une forme symétrique non dégénérée invariante, la cohomologie semi-infinie relative de l’algèbre des lacets admet une structure, qui est l’analogue de la structure classique de la cohomologie de de Rham des variétés kählériennes.
منابع مشابه
Semi-infinite Induction and Wakimoto Modules
The purpose of this paper is to suggest the construction and study properties of semi-infinite induction, which relates to semi-infinite cohomology the same way induction relates to homology and coinduction to cohomology. We prove a version of the Shapiro Lemma, showing that the semi-infinite cohomology of a module is isomorphic to that of the semi-infinitely induced module. A practical outcome...
متن کاملThe semi-infinite cohomology of affine Lie algebras
We study the semi-infinite or BRST cohomology of affine Lie algebras in detail. This cohomology is relevant in the BRST approach to gauged WZNW models. Our main result is to prove necessary and sufficient conditions on ghost numbers and weights for non-trivial elements in the cohomology. In particular we prove the existence of an infinite sequence of elements in the cohomology for non-zero ghos...
متن کاملar X iv : 0 80 1 . 09 04 v 1 [ m at h . A T ] 7 J an 2 00 8 CHARACTERISTIC CLASSES OF A ∞ - ALGEBRAS
A standard combinatorial construction, due to Kontsevich, associates to any A∞-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We propose an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology ...
متن کاملSuperconformal current algebras and topological field theories
Topological conformal field theories based on superconformal current algebras are constructed. The models thus obtained are the supersymmetric version of the G/G coset theories. Their topological conformal algebra is generated by operators of dimensions 1, 2 and 3 and can be regarded as an extension of the twisted N = 2 superconformal algebra. These models possess an extended supersymmetry whos...
متن کاملThe Cohomology of Semi-infinite Deligne–lusztig Varieties
We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne– Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes Xh. Boyarchenko’s two conjectures ...
متن کامل